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ACCEPTANCE CONTROL CHARTS WITH STIPULATED ERROR

PROBABILITIES BASED ON PO1SSON COUNT DATA

by

Suresh Mhatre
Richard L. Scheaffer

P Richard §. Leavenworth

‘ ABSTRACT

An acceptance control charting scheme is investigated for the case in
which observations consist of the number of nonconformances seen when a
process is observed for a certain fixed length of time. The counts are
assumed to have a Poisson distribution. Two normal approximations for
finding the optimum sample size and control limit are compared to the exact
values found through the use of Poisson (or Chi-square) probabilities. Rec~

ommendations for practical usage are made as a result of a numerica! study.




TSy

TR

B

e

Jurks

g

»
L m———

PR S22 20

a7 N
,,..,..%;

&
b

4

ACCEPTANCE CONTROL CHARTS WITH STIPULATED ERROR
PROBABILITIES BASED ON POISSON COUNT DATA

by

Suresh Mhatre
Richard L. Scheaffer
Richard S. Leavenworth

INTRODUCTTON

The application of control chart methods to accept and reject the

output of a process has been described in the literature on several oc-

casions. Winterhalter (1945) suggested the use of what he called reject

limits in conjunction with the usual control limits to control a process
average, X. So long as process dispersion was held in control and the

control limits lay within the reject iimits, virtually all product would

meet specifications,

Hill (1956) expanded this ldea by employing the reject limits in place
of standard control limits for those cases in which the difference be-
tween the upper and lower specification limits (U - L) substantially ex-

ceeded the natural tolerances of the process, 6 o'. In his 1957 arcicle,

Richard Freund gave more form and substance to Winterhalter's earlier

work by providing an analytical basis for deriving the location of a reject

limit. He also coined the phrase Acceptance Control Chart and referred to

the derived limit as the Acceptance Control Limit (ACL).

His development

closely follows that for variables acceptance sampling plans, Essen-
tially, it requires the specification of twe points on an operating
characteristic curve in terms of a quality level and probability of

acceptance for each. From -hese inputs are derived a control limit,
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the ACL, and a subgroup size, n. So long as the plotted values of E
fall within the ACL's, the process may be assumed to be turning out
product that meets specifications, subject to the defined risks.

In this paper, we extend Freund's work to the attributes case of
counts of nonconformances or nonconformances per unit which can be shown
to follow the Poisson distribution. Traditionally, the c-chart has been
used when the area of opportunity for a nonconformity to occur is constant;
the u-chart has been used when the area of opportunity varies from sub-
group to subgroup. Three methods for finding the optimum subgroup size
and acceptance control limit are compared. These are: (1) the exact
method, employing the Poisson distribution; (2) the standard normal approxe

imation; and (3) the square-root normal transformation.
t
PROBLEM FORMULATION

Control charts for nonconformances have found many uses in industry.

" Examples include counts of surface imperfections on film, flaws in fabric

weave and nonconformities in completed units and subassemblies. The par-
ticular application developed in this paper relates to maintenance activ-
ities. Frequently maintenance shops process similar types of units, such
as hydraulic assemblies, but the units vary substantially in size and
time required to process them. In such cases, it may be reasonable to
assume that the act of committing an error in processing (the sccurence
of a nonconformity) has a constant probability as a function of t e,
The area of opportunity for the occurrence of a nonconformity is thus
measured in units of time.

We assume that the quality control procedure consists of observing
a process for a length of time, H, and counting the number of noncon-

formances, X, that occur during this time interval. We assume that X
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has a Poisson distribution with intensity A. That is, the mean number

of nonconformances observed in time H is AH. Formulating the problem

requires the specification of two pairs of values:

(1) An Acceptable Process Level, Ao’ and its associated

risk level, a. A 18 the process quality level that is con-
(o)

sidered acceptable as a process average measured in terms of

nonconformances per 100 worker-hours, The probability of ac-

cepting the hypothesis that the process is operating at or be-

low Ao’ when it actually is operating at Ao‘ is 1l - a,

(2) A Rejectable Process Level, Al, and its associated

risk level, B. Al is the process quality level that is con~

sidered unacceptable. The risk of accepting the hypothesis

that the process is operating at or below Ao when it actually

is operating at or above Al is 8.

The two points (ko, 1 - a) and (XL,B) thus define the operating clar-

acteristic curve of the acceptance control chart plan. From these two

points we will derive the Acceptance Control Limit, K, and the optimal

subgroup size, H.

Generally speaking, the quality control procedure will involve looking

at a series of time intervals, El’ EZ’ vees, and observing il’ X

2’ LI
In this case, we assume X, has a Poisson distribution with mean A, . Hy
can be thought of as the size of the ith

subgroup,
The intensity of nonconformances at the acceptable process level

(APL) will be deonted by AO, while the intensity at the rejectable pro-

coss level (RPL) will be denoted by Al. With K denoting the acceptance

control limit (ACL), we can make the identifications shown in Figure 1.
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Fig. 1 An Acceptance Control Charting Scheme for Poisson Counts

PROBLEM SOLUTION

Our problem is to determine values of U and K for fixed values of a,

Ry AO and Al. Recall that we want to choose H and K so that the probabil-
ity of X exceeding K, when xo is the true intensity, is a; and the proba-

bility of X being less than or equal to K, when Alis the true intensity, is 8.

We shall investigate three methods of calculating H and K, for fixed

AO, Al’ o and B.

The first will use exact Poisson probabilities; the

other two will involve normal approximations to the Poisson. One might

ask why approximate procedures are needed when an exact solution is known.

I~

é The answer lies in the fact that the exact solution, for all possible in-
} dustrial applications, requires entensive tables of Poisson (or Chi~square)
}

£ X probabilities. Normal approximations have been used in industry and can

| e

B

E' g be worked out quickly and easily with reference to only a table of normal

E’ ¢

B ,{ curve areas.

E 4

£
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Exact Solution

We can find the exact solution for H and K based on Poisson prob-

abilities. If X has a Poisson distribution with mean 6, then

2
X2ec + 1)

where _)_(_3 denotes a Chi~square random variable with r degress of freedom.

Py (X < C) = P( > 20)

Thus, a table of Chi-square probabilities can be used in place of Poisson

probabilities,

Now H and K are found by simultaneously solving the equations

2 = -
PAOH(X SK) = P(Xy e, gy > ) =1 -«
and
2 3 =
PAIH(X <K) = P(Xz(x +1)° ZAIH) B.

These cquations must be solved iteratively,

Standard Normal Approximation

If X has a Poisson distribution with mean MH, then it is well-known

that
X- M
/A1

has, approximately, a standard normal distribution i{ Al is large.
(That is, (X - Aﬁ)//ii has a distribution which tends to the standard
normal distribution as AH tends to infinity; the approximation secms
to work well for AH greater than 5.)

1f zy denotes the value that cuts off an upper tail area of Y
under the standard normal curve, then H and K can be found by solving
the equations

~A H

- 0
Z =

Q r"—")\o

=

and
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Solving these equations yields
— -
He | 2y Ao + zB /Al

Al - Ao

and

K= AOH + zaVAOH = Alﬂ - zBVAIH

Square-Root Normal Transformation

Since X, suitably standardized, is approximately normall: dis-
tributed, it can be shown thatv/z also is approximately normally dis-
tributed. The variance of ¥X 1is essentially free of A, for large AH,
and the distribution of /X tends to be more accurately approximated
by a normal <istribution than does the distributior of X, for moder-

, ate values of AM.

The theory (see Johnson and Kotz [1969]) actually states the
, 2(/X - /3H)

is approximately distributed as a standard normal random variable 1if

AH is large. Vorking on the true square-root scale, we find H and

/E: by solving the equations

z =2(/X - VYA .H)
a 0

and

~2g = 2(/X - /AlH )

e <t L O — e it e

which yield

Py

2
i 0.25 (z0 + ZB)

H = )
X - gD

and

.
L S~

YK = /xou +*1/2 2

s T Y A
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Transforming back to the original count scale
K= (/AOH +1/2 za)2

The equation for H is the same as the one in the standard normal case

when a = B.

NUMERICAL STUDY

The values of H and X were found for various fixed values of
AO' Al’ o« and B. A representative sample illustrative of our findings is
shown in Table 1. The complete set of results is contained in the Appendix.

To illustrate these results, we will look at the first row of figures

where a = 0,025, 8 = 0.01, A, = 0.1, and Al = 0,6, We say that the

0
process is out of control if there are more than K nonconformances
in H time units of observation. K has the value of 5 for both the
standard normal approximation and the exact case and the value 6 for
the square-root normal case. Note that the standard normal approxima-
tion gives a value of H, 23.469 time units, much larger than the true
value, 22.000. Thus we would be observing the process longer than
we should, for the same K value, and, as a result, have a greater
probability of seeing more than K nonconformities than the nominal value
of a indicates.

The square-root transformation results in an H approximately equal
to the true value, but the K is slightly larger. Thus the probability

of seeing more than K nonconformities would be slightly smaller than the

nominal value. This pattern prevails throughout most of the cases studied.



TABLE 1

Values of H and K for Specified
AO’ Al’ a and B.

a = 0.025 g = 0.01

“NORHAL "UNORMAL (CHI~SQUARE)
AO kl H K H K H K
0.1 0.6 23.469 5 21.858 6 22.000 5
0.2 0.7 31.887 11 30.280 12 31.000 11
0.3 0.8 39.813 18 38.222 19 38.250 18
0.4 0.9 47.534 27 45.950 .28 46.500 27
1.0 4.0 4.860 9 4.595 10 4.795 9
2.0 5.0 7.067 21 6.803 22 6.900 21
3.0 6.0 9.191 37 8.927 38 8.967 37
4.0 7.0 11.283 58 11.019 58 11.172 58

a = 0.05 8 = 0.01
0.1 0.6 21.578 4 18.773 5 19.700 4
0.2 0.7 28.783 9 26,005 10 27,250 9
0.3 0.8 35.575 16 32.812 16 33.500 15
0.4 0.9 42.195 23 39.442 23 39.556 22
1.0 4.0 4,408 7 3.944 8 4.000 7
2.0 5.0 6.299 18 5.839 18 5.860 17
3.0 6.0 8.131 32 7.663 32 7.767 31
4.0 7.0 9.913 50 9.459 49 9.536 48
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TABLE 1, CONT.

FOR SPECIFIED AO’ Al’ o and B.

VALUES OF H AND K

a = 0.05 B = 0.025

STANDARD SQUARE ROOT EXACT

NORMAL NORMAL (CHI-SQUARE)
N Y H K H K H K
0.1 0.6 16.626 3 15.469 4 14.583, 3
0.2 0.7 22.580 8 21.429 8 20.570 7
0.3 0.8 28.186 13 27.038 13 28.167 13
0.4 0.9 33.647 19 32.501 20 33.000 19
1.0 4.0 3.442 6 3.250 7 3.285 6
2.0 5.0 5.003 15 4.812 15 4,700 14
3.0 6.0 6.505 26 6.314 27 6.350 26
4.0 7.0 7.985 41 7.79 41 7.988 40

9




EXAMPLE APPLICATIONS

Example 1. Check of Repaired Items Against a Standard. The data of

é Table 2 shows the number of maintenance errors, 51, observed upon
‘ % sampling repaired aircraft parts for which the actual repair time was
!
: ﬂi hours. In this example, Ei is fixed by the practical sampling
; circumstances, and so no specific Al needs to be determined. It is
;- desired that AO be 0.01 and o be 0.01. Thus 2, is 2.33.
TABLE 2 NONCONFORMANCES AMONG REPAIRED ITEMS
5 |
g |
? STANDARD NORMAL SQUARE ROOT NORMAL
SAMPLE Ei Hi K K
' 1 1 58.33 2.36 3.72
k‘ '
2 4 80.22 2.89 4.24
% ‘J 3 1 209.24 5.46 6.82
¥
% ; 4 2 164.70 4,64 5.99
-
&
] Table 2 also shows the values of K obtained by the standard normal
4 ; approximat fon and the square-root normal transformation. For the first
% sample:
: V Standard normal approximation
j lk K= Al +2 /XM
{
i
= 0.01(58.33) + 2.33 ¥ 0.01(58.33)
y
! o
J = 2.36
Square-root normal transformation
) — 2
[ K= (/A +1/22)
S Y ITECL S 2
2 = (/0.01(58.33) + 2.33/2)
-
1 = 3,72
; 4
3
‘ 10
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Samples 1, 3 and 4 would be declared "in control" at the standard
value of Ao.under either scheme. However, sample 2, with §2 = 4, would
be declared "out~of-control" under the standard normal scheme and "in

control™ if the square-root normal transformation were used; the observed

value is very close to the boundary in either case. Whether we declare

the process to be "out-of-control" or "in control" at the point that
sample 2 was taken depends upon whether we want to think of the true a

risk value as being slightly larger than 0.0l or slightly smaller than

0.01. In many cases declaring a process to be out-of-control when, in

fact, it is in control 1is a costly error. Thus a quality control

engineer may wish to use the more conservative procedure that lends

itself to smaller a value.

Example 2. Establishing a Standard Plan to Check Maintenance Errors

in a Paint Shop.

It is desired to set up a standard Acceptance Control
Chart plan for checking maintenance errors in an aircraft subassembly

paint shop. The acceptabie process level 1s 3 errors per 100 worker-

hours with a risk level (a) of 0.05. The rejectable process level is

to be 15 errors per 100 worker-hours with a risk level of 0.10. Values
of K and H will be found by the three methods.

As previously stated, the Chi-square may be used to solve for

Poisson probabilities. Using the Hald Statistical Tables (1952);

2 -
P(Xy (ga) S Ao = @
p(x2 <2\ H) =1-8
T2(k1) = M1

Substituting the values of AO’ Al’ a, and B into these equations

2 =
P(k2(K+l) < 2(0.03)H) = 0.05

‘)
) [2ad :) = (
Py ey S 26015 = 0.90

11
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A convenient search procedure for solving these equations for K and H

is to take the ratios of the values of gfi for even values of r and

solve for the value of r that is closest to this ratio. The value of

H may then be found from the resulting values of Xi taken from the

table.

2A1H
iigi = AI/AO = 0.15/0.03 = 5.0

From the Hald Tables of the Chi-square distribution:

r X(r, 0.90)/x%(r, 0.05)
6 10.6 /1.64 = 6.46
8 13.4  /2.73 = 4.91
10 16.0 /3.9 = 4.06

Clearly, the ratio of the two Chi-squares 1s closest to the desired
value of 5.0 when r equals 8. The value of K then must be
K=(8/2) -1=3
H is found by solving the equation

2)\H = X2
r

for each (A, y) pair and selecting the larger (more conservative value. Thus

2 , o
H=Xg .90y / 2% = 13:4 /7 2(0.15) = 44.67
or
2 = —
= Xeg .05y / 22 =2:73/ 2(0.03) = 45.50

Thus our observation time should be 45.50 hours.

In comparison, using the standard normal approximation yields values

of H and X of

y = | 1:645/0.03 + 1.282/0.15 o 42.41
0.15 - 0,03 '
.

=~
[}

0.03(42.41) + 1.645/0.03(42.41) = 3,13

12
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By the square-root normal transformation, these values are

_ 0.25(1.645 + 1.282)%
(/0.15 - /0.03)°

= 46.73

e,

(V0.03066.73) + 1.645/2)% = 4.03

=~
n

It should be noted that the actual values of o and B in this case
are 0.040 and 0.122 using the standard normal approximation and 0.014
and 0.172 using the square-root transformation. Thus both approximations
are more conservative with respect to a error and less conservative with
respect to B error than the plan design called for (a = 0.05 and B = 0.10).

As with many cases involving observations on maintenance operations
the actual total maintenance time involved in a sample subgroup is likely
to differ from the planned, or design, time. Table 3 shows the actual
subgroup times and nonconformities found in 21 subgroups. The actual
times range from a low of 32.1 hours to a high of 57.8. This results
from the fairly wide discrete time variation required to process a unit,
As a consequence, 1t may be necessary to recompute the control limit
based upon the actual time in a subgroup as opposed to the value found
for the design time. Since the count of nonconformities is integer-

valued, recalculation of the control limit is not always required.

Figure 2 shows the Acceptance Control Chart, using three sets of
control limits, for the sampling data of Table 3. Since the actual
sample hours vary from subgroup to subgroip, it is inappropriate to
plot a central line on this chart. (Where the sample hours can be held
constant, a central line would be plotted at AOH.) The control limit

using the exact Poisson is plotted as a dash line at the value 3.5 for

all points except subgroups 7, 9, 12, and 21. Recalculation was necessary

13
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for subgroups 7 and 12 (4.5) because of the larger than standard sample

hours and for subgroups 9 and 21 because of the smaller than standard

sample hours.

==« — = = = ACL by exact Poisson

=== - =e-ACL std. normal approximation

6 ACL square-root normal transformation
n
5
£ F =y —_— T
8 4 o o
8 | W -.....J-O-L—-._.__..._-_.___--_‘_—
1 4 !
§ N vecsesbkmn
3 2 <
-
ks 1
0! A —— - e e +-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Subgroup Number
Fig, 2 Acceptance Control Chart for Data of Table 3

Table 3 also shows the values of K calculated from the standard
normal approximation and from the square-root normal transformation.
Again, since the count of nonconformities, ¢, is integer-valued, the
ACL for each approximation has been set half-way between integerized
values of K and K+1. Where these ACL values differ from those found
by the exact Poisson, they are plotted on Figure 2 as dotted lines for
the standard normal approximation and

as solid lines for the square-root

normal transformation.

Ubserving Figure 2, it should be
condition is signalled for subgroup 1
the standard normal approximation but
transformation.

normal approximation differs from the

noted that an out-of-control
by both the exact Poisson and

not by the square-root normal

In those instances wherein the ACL by the standard

exact Poisson, 1t tends to be
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tighter. Thus the standard normal approximation tends to protect more
against B error at the sacrifice of o error. The square-root normal
transformation tends to act just the opposite. Where it differs from
the exact Polsson it tends to be looser affording greater protection
against « error at the expense of B8 error.

This feature is born out by examination of Table 3 in which are
tabulated the actual o and B error for each subgroup using cach approxi-
mation method. Recall that the design level for a was 0.05. By the
standard normal approximation, actual o protection ranged from 0.035
to 0,115 with 18 of 21 case above 0.05. In the case of the square-root
normal transformation, actual o error ranged from 0.015 to 0.039; all
cases were below the design level of 0.05.

The design level for 8 was 0.10. 1In the case of the standard normal
approximation, the actual B error ranged from 0.027 to 0.146 with 5 of
21 cases above 0.10, For the square-root transformation all but thré&%
cases were above the design level with the actual values ranging from
0.067 to 0,292, 1In four cases the actual risk levels were more than
double the design level.

It should be noted that where the ACL found by an approximation
method agrees with that found by the exact Poisson, the true values of
a and B apply to the exact Poisson as well. Thus when actual sample
hours differ from the value of H found from applyirg the Chi-square

formulas, the actual levels of protection may change significantly.

CONCLUSIONS
This paper has described an Acceptance Control Charting approach
for process control of cases involving the observation of Poisson counts.

In addition to deliniating a procedure utilizing the exact Poisson,

16 =
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procedures for use of the popular standard normal approximation and

of the not-so-frequently used square-root normal transiormation were

developed and evaluated.

It was shown that the standard normal approximation tended to

favor protection against § error. To the extent that the results of
ACL calculations differed from the exact Poisson, the difference was

biased in favor of B error protection. On the other hand, usage of

the square-root normal transformation leads to ACL calculations offering

better protection against a error. To the extent that these calculations

differed from the exact Poisson, the blas favored o error protection,

Study of a number of cases, of which Table 1 includes a sample,

indicated that the square-root normal transformation gives values of

H and K that oscillate around the true value< but that large discrepancies

. between the approximate and true values are rare. We therefore recommend
! ~

using ..e square-root transformation when it is cumbersome or impossible
5
] {

to use exact values and when the cost of a error is high in relation to

5 vrror, However, for those cases in which the cost of B error 1s equal

to or greater than that of ¢ error, the standard normal approximation

is preferable.

e+ e e, —
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COMPLETE RESULTS OF NUMERICAL STUDY
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APPENDIX

a = 0.025 g = 0.01

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
20 Al H K H K H K
0.1 0.3 89.71 14 85.74 15 84.83 14
0.2 0.4 137.86 37 133.91 38 134.80 37
0.3 0.5 184.83 70 180.88 70 181.14 69
0.4 0.6 231,37 111 227.43 111 227.71 110
0.5 0.7 277.71 16l 273.77 161 273,72 160
0.6 0.8 323.94 221 320,00 220 319.48 219
0.7 0.9 370.09 290 366.16 289 366.29 288
0.8 1.0 416,20 368 412,27 366 411.59 365
0.9 1.1 462,28 456 458,35 453 457,81 452
1.0 1,2 508,34 552 504.41 549 503.83 548

= (0,025 ¢ = 0,01

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
B A\ H K t K i K
0.1 0.6 23.469 5 21,870 6 22,000 5
0.2 0.7 31.887 11 30.296 12 31.000 11
0.3 0.8 39.813 18 38.226 19 38.250 18
0.4 0.9 47.534 27 45,950 28 46.500 27
0.5 1.0 55.145 37 53.563 38 53.800 37
0.6 1.1 62.691 49 61.110 49 61.833 49
0.7 1.2 70.192 62 68.613 63 70.087 63
0.3 1.3 77.665 77 76.086 77 76.785 77
0.4 1.4 | 85.115 93 83.537 93 84,148 93
1.0 1.5 I 92.549 111 90.971 1l 91,091 Ll

— L - e - —
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APPENDIX

a = 0.025

B = 0.01

STANDARD SQUARE~ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
A0 Al H K H K H K
1.0 2.0 27.57 37 26,78 38 26.90 37
2.0 3.0 46,27 111 45,49 111 45,54 110
3.0 4,0 64.79 221 64.00 220 63.90 219
4,0 5.0 83.24 368 82.45 366 82.32 365
5.0 6.0 101.67 552 100.88 549 100.77 548
6.0 7.0 120.08 773 119.29 769 119.23 768
7.0 8.0 138.48 1030 137.70 1026 137.57 1024
8.0 9.0 156.88 | 1324 156.09 1319 156.07 1318
9.0 10.0 175,27 1655 174.49 1649 174.35 | 1647
10.0 11.0 193.67 2022 192.88 2016 192.77 2014
a = 0,025 = 0,01

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
{' 0 Al H K H “I K H K
1.0 3.0 8.972 14 8.574 15 8.483 14
2.0 4.0 13.786 37 13.391 38 13.450 37
3.0 5.0 18.483 70 18.088 70 18.114 69
4.0 6.0 23.137 111 22,743 111 22.771 110
5.0 7.0 27.771 161 27.377 161 27.372 160
6.0 8.0 32.394 221 32.000 220 31.948 219
7.0 9.0 37.009 290 36.616 289 36.629 288
8.0 10.0 41.620 368 41.227 366 41.159 365
9.0 11.0 46,228 456 45.834 453 45,781 452
16.0 12.0 50.834 552 50.440 549 50.383 548

b R SN S ed
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APPENDIX
a = 0.025 8 = 0.01
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CI1L-SQUARE
X0 Al H K H K i K
1.0 4.0 4,860 9 4.595 | 10 4.795 9
2.0 5.0 7.067 | 21 6.803 | 22 6.900 | 21
3.0 6.0 9.191 | 37 8.927 38 8.967 37
4.0 7.0 | 11.283 | 58 | 11.019 | 58 11.172 | 58
5.0 8.0 | 13.358 | 82 13.095 | 82 | 13.176 | 82
6.0 9.0 | 15.425 | 111 | 15.162 | 111 | 15.181 | 110
7.0 | 10.0 | 17.485 | 144 | 17.223 | 143 | 17.189 | 142
8.0 | 11.0 |19.562 | 180 | 19.279 | 180 | 19.304 | 179
9.0 | 12.0 | 21.596 | 221 | 21.333 | 220 | 21.299 | 219
10.0 | 13.0 | 23.648 | 266 | 23.385 | 265 | 23.382 | 264
x = 0.05 B = 0.01
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
10 A H K i K i K
!
0.1 0.3 80.52 | 12 73.6 13 77.00 | 12
0.2 0.4 | 121.81 32 126,94 | 32 | 116.50 | 31
0.3 0.5 | 162.10 | 60 | 155.26 | 58 | 156.06 | 58
0.4 0.6 | 202.04 | 95 |195.22 | 93 |196.25 | 93
0.5 0.7 | 241.81 | 138 | 235.00 | 136 | 234.58 | 135
0.6 0.8 | 281.49 | 190 | 274.68 | 187 | 274.91 | 186
0.7 0.9 | 321.10 | 249 | 314.30 | 245 | 313.88 | 244
0.8 1.0 360.68 | 316 | 353.88 | 311 354.23 | 311
0.9 1.1 400.23 | 391 393.44 | 386 | 393.46 | 385
b 1.0 1.2 439.76 | 474 432.97 | 468 | 432.85 | 467
l
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APPENDIX
a = 0.05 B = 0.01
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
\0 Al H K H K H K
0.1 0.6 21.578 4 18.773 5 19.700 4
0.2 0.7 28.783 9 26.005 10 27.250 9
0.3 0.8 35.575 16 32,812 16 33.500 15
0.4 0.9 42,195 23 39.442 23 39.556 22
0.5 1.0 48.724 32 45,977 32 46.600 31
0.6 1.1 55.197 42 52.455 41 53.250 41
0.7 1.2 61.633 53 58.895 52 59.256 52
0.8 1.3 68.045 66 65.310 65 65.246 64
0.9 1.4 74.438 80 71.706 78 72.032 78
1.0 1.5 80.817 95 78.087 93 78.499 93
W= 0,05 o= 0,01
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI~SQUARE
: S
0 A H K H K H K
1.0 2.0 24,36 32 22.99 32 23.30 31
2.0 3.0 40,41 95 39.04 93 39.25 93
3.0 4.0 56.30 190 54.94 187 54,98 186
4.0 5.0 72.14 316 70.78 311 70.85 311
5.0 6.0 87.95 474 86.59 468 86.57 467
6.0 7.0 103.76 663 | 102.40 656 | 102.38 65"
7.0 8.0 119.55 884 118.20 875 118.11 874
8.0 9.0 135.34 | 1136 | 133.99 | 1126 134.03 | 1126
9.0 10.0 151.13 | 1420 | 149.77 | 1409 149.96 | 1410
! 10.0 11.0 166.92 1736 | 165.56 | 1723 165.91 | 1726
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APPENDIX
i
a=0.05 6 = 0.01
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CH1-SQUARE
; \0 AL H K H K H K
: 1.0 3.0 .052 | 12 7.360 | 13 7.700 | 12
ﬁ 2.0 4.0 | 12.181 | 32 | 11.494 | 32 | 12.075 | 32
- 3.0 5.0 |16.210 | 60 | 15.526 | . 58 | 15.606 | 58
; ‘ 4.0 6.0 |200206 | 95 [19.522 | 93 [19.625| 93
| 5.0 7.0 | 26.18 | 138 | 23.500 | 136 | 23.458 | 135
| 6.0 8.0 |28.149 | 190 | 27.468 | 187 | 27.491 | 186
i 7.0 9.0 | 32.110 | 249 | 31.430 | 245 | 31.388 | 244
| 8.0 |10.0 | 36.068 | 316 |35.388 | 311 | 35.423 | 311
9.0 | 11.0 | 40.023 | 391 | 39.343 | 386 | 39.346 | 385
| 10,0 | 12.0 | 43.976 | 474 | 43.296 | 468 | 43.285 | 467
b
] A = 0.05 8= 0.01
¥
STANDARD SQUARE-ROOT ACTUAL
- NORMAL NORMAL CHI-SQUARE
t .
| ' e
) 0 Xl H ] K i K i K
- 1.0 4.0 4.408 7 3.944 8 4.000 7
; 2.0 5.0 6.209 | 18 5.839 | 18 5.860 | 17
¢ 3.0 6.0 8.121 | 132 7.663 | 32 7.767 | 31
" 4.0 7.0 9.915 | 50 9.459 | 49 9.536 | 48
? 5.0 8.0 | 11.696 | 71 | 11.241 | 69 | 11.174 | 68
i 6.0 9.0 | 13.470 | 95 | 13.015 | 93 [13.083 | 93
* 7.0 | 10,0 ] 15.238 | 123 | 14.783 | 121 | 14.766 | 120
{ 5.0 | 11,0 |17.003 | 155 [16.549 | 152 [ 16,523 | 151
A 9.0 | 12.0 118.766 | 190 | 18.312 | 187 | 18.327 | 186
g 110.0 | 13.0  |20.527 | 228 | 20.073 | 225 | 20.077 | 224
: ! L e —— S S, _—
‘r;
|
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APPENDIX

a = 0,05 ¢ = 0.025

STANDARD SQUARE-ROOCT ACTUAL
NORMAL NORMAL CHI-SQUARE
A0 Al H K H K H K
0.1 0.3 63.52 10 60.65 11 61.5 10
0.2 0.4 97.58 26 94,72 27 95.25 26
0.3 0.5 130.80 49 127.94 49 129,83 49
0.4 0.6 163.72 78 160.86 78 159.99 77
0.5 0.7 196.49 114 193.64 114 193.76 113
0.6 0.8 229.19 156 226.64 156 226.49 155
0.7 0.9 261.82 205 258.99 204 258.54 203
0.8 1.0 294,45 260 291.60 259 291.24 258
0.9 1.1 327.04 322 324.20 321 324.41 320
1.0 1.2 359.62 390 356.77 389 356.99 3838
«w = 0.05 B = 0.025

STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHT-SQUARE
YO vl H K H K il K
0.1 0.6 16.626 3 15.469 4 14.583 3
0.2 0.7 22.580 8 21.429 8 20.571 7
0.3 0.8 28.186 13 27.038 13 28.167 13
0.4 0.9 33.647 19 32.601 20 33.125 19
0.5 1.0 39.031 26 37.886 27 38.100 26
0.6 1.1 44,368 35 43,224 35 43,182 34
0.7 1.2 49.674 44 48.531 44 48.250 43
u.8 1.3 54.959 54 53.817 55 54,068 54
0.9 1.4 60.229 66 59.087 66 59,002 65
1.0 1.5 65,487 78 64,345 78 63.995 77
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u = 0,05 £ = 0,025
STANDARD SQUARE-ROQT ACTUAL
NORMAL NORMAL CHI-SQUARE
A0 Al H K H K H K
1.0 2.0 19.515 26 18.94 27 19.05 26
2.0 3.0 32.743 78 32.17 78 32.00 77
3.0 4.0 45.820 156 45.27 156 45.30 155
4.0 5.0 58.890 260 58.32 259 58.25 258
5.0 6.0 71.923 390 71.35 389 71.40 388
6.0 7.0 84.946 546 84.38 544 84.34 543
7.0 8.0 97.960 728 97.40 725 97.31 724
8.0 9.0 110.980 936 110.41 933 110.40 932
9.0 10.0 123.990} 1170 123.42 1166 123.36 1165
10.0 11.0 136.990f 1430 136.43 1426 136.34 1424
v = 0.05 g = 0.025
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CliI-SQUARE
Al H K 1l K H K
3.0 6.352 10 6.063 11 6.150 10
2. 4.0 9.758 26 9.471 27 9.525 26
3. 5.0 13.080 49 12.794 49 12.679 48
4. 6.0 16.372 78 16.086 78 15.999 77
5. 7.0 19.649 114 19.364 114 19.376 113
6. 8.0 22.919 156 22.634 156 22.650 155
7. 9.0 26,184 205 25,899 204 25.854 203
8. 10.0 29.445 260 29.160 259 29.124 258
9. 11.0 32.704 322 32.419 321 32.441 320
|
VLo, 12.0 35.962 390 35.677 389 35.699 388
b - .
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APPENDIX
a = 0.05 g = 0.025
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI1-SQUARE
10 AL H K 1| K H K
1.0 4.0 3,442 6 3.250 7 3.285 6
2.0 5.0 5.003 15 4.812 15 4.700 14
3.0 6.0 6.505 26 6.314 27 6.350 26
4.0 7.0 7.985 41 7.79 41 7.779 40
5.0 8.0 9.453 58 9.262 58 9.364 58
6.0 9.0 10.914 78 10.724 78 10.666 77
| 7.0 10.0 12,372 101 12.182 101 12.138 | 100
{ 8.0 11.0 13.827 127 13.637 127 13.616 126
| 9.0 12.0 15.279 156 15.089 156 15.100 | 155
10.0 13.0 16.731 188 16.541 187 16.500 | 186
= 0.01 £ =0.025
{
!
| STANDARD SQUARE-RCOT ACTUAL
| NORMAL NORMAL CHI-SQUARE
t
{ 0 M H K H K H K
f ——
% 0.1 0.3 81.86 14 85.74 17 82.50 15
: 0.2 0.4 130.01 37 133.91 40 133.75 39
} 0.3 0.5 176.98 70 180.88 73 180.88 72
} 0.4 0.6 223.52 111 227.43 115 227.97 114
? 0.5 0.7 269.86 161 273.77 165 274,31 165
{ 0.6 0.8 316.08 221 319.99 226 320.26 225
0.7 0.9 362,24 290 366.16 295 365.96 294
§ ! 0.8 1.0 408,35 368 ! 412,27 373 411.55 372
g l 0.9 1.1 454,43 456 458.35 461 457.98 460
N [
i v 1.0 1.2 500.48 552 504.41 558 504 .17 557
1 - . R
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APPENDIX

a = 0.01

A= 0.025

STANDARD

SQUARE-ROOT

ACTUAL

NORMAL NORMAL CH1-SQUARE
\0 A H K H K H K
0.1 0.6 | 20.328 5 | 21.870 7 | 23.300 6
0.2 0.7 | 28.746 | 11 | 30.206 | 13 | 30.500 | 12
0.3 0.8 | 36.672 | 18 | 38226 ] 21 | 37.000] 19
0.4 0.9 | 44.392 1 27 | 3s.950 | 30 | 4s.944 | 28
0.5 1.0 | s2.006 | 37 | 53.563| 40 | 53.500 | 39
0.6 1.1 | so.s49 | 49 | e1.210| 52 | 60.736 | 51
0.7 1.2 | 6051 ] 62 | 68613 66 | 68.917| 65
n.8 1.3 | 7a.s23] 77 | 76.086 | 80 | 76.501 | 80
0.9 1.4 | s1.973] 93 | 83.537| 97 | 83.582 | 96
1.0 1.5 | sg.a07| 111 | en.o71| 115 | o1.186 | 114

ao= 0.01 o= 0,025
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
) Al H K H K H K
1.0 2.0 | 26.00 37 | 26.78 40 | 26.75 39
2.0 5.0 | as.70 | 111 | 4s.49 | 115 | 45.59 | 114
3.0 4.0 | 63.22 | 221 | es.00 | 226 | e4.05 | 225
4.0 5.0 | 81.67 | 368 | 82.45 | 373 | 82.31 | 372
5.0 6.0 |100.10 | 52 |100.88 | 558 |100.83 | 557
6.0 7.0 |118.51 | 773 |119.20 | 779 [119.20 | 778
7.0 8.0 |136.92 | 1030 |137.70 | 1037 |137.60 | 1036
8.0 9.0 |155.31 | 1324 |156.10 | 1332 |156.03 | 1331
0.0 | 10.0 1173.70 | 1655 | 174.48 | 1664 | 174.36 | 1662
1.0 | 1.0 're2.10 | 2022 | 1e2.88 | 2032 | 102.73 | 2030
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APPENDIX
« = 0.01 R o= 0.025
STANDARD SQUARE-ROOT ACTUAL
NORMAL NORMAL CHI-SQUARE
A0 A’ H K H K H K
1.0 3.0 8.186 14 8.574 17 8.250 | 15
2.0 4.0 | 13.001 37 | 13.301] 40 | 13.375| 39
3.0 5.0 17.697 70 | 18.088 73 18.088 | 72
4.0 6.0 22,353 | 111 22.743 | 115 | 22.797 | 114
5.0 7.0 | 26.986 | 161 27.377 | 165 | 27.431 | 165
6.0 8.0 31,608 | 221 32.000 | 226 32,026 | 225
7.0 9.0 36.224 | 290 36.616 | 295 36.596 | 294
8.0 | 10.0 | 40.835| 368 | 41.227| 373 | 41.155 | 372
9.0 11.0 | 45.443| 456 | 45.834 | 461 | 45.789 | 460
10.0 12.0 50.048 | 552 50.440 | 558 | 50.417 | 557
« = 0.01 8 = 0.025
STANDARD SQUARE-ROCT ACTUAL
NORMAL NORMAL CHI-SQUARE
f ]
0 A i K ] % L R
1.0 4.0 4.337 9 4.595| 11 | 4.275 9
2.0 5.0 6.564| 21 6.803 | 24 6.675| 22
3.0 6.0 8.667| 37 8.927| 40 10.550| 39
4.0 7.0 | 10.759] 58 11.010] 61 10,998 | 60
5.0 8.0 | 12.835| 82 13.005| 86 13.113| 85
6.0 9.0 | 14.901] 111 15.162| 115 15.198] 114
7.0 10.0 1..962| 144 17.223] 147 17.261 1 147
( 8.0 11.0 1¢.018] 180 19.279| 184 19.311} 184
J 9.0 | 12.0 | »21.072] 221 21.333| 226 21.351| 225
és | 100 13.0 23.124L7 266 23.385| 271 23.383] 270
i e - -
3
28




